7.29y^2-3080y+100170=0

Simple and best practice solution for 7.29y^2-3080y+100170=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7.29y^2-3080y+100170=0 equation:


Simplifying
7.29y2 + -3080y + 100170 = 0

Reorder the terms:
100170 + -3080y + 7.29y2 = 0

Solving
100170 + -3080y + 7.29y2 = 0

Solving for variable 'y'.

Begin completing the square.  Divide all terms by
7.29 the coefficient of the squared term: 

Divide each side by '7.29'.
13740.74074 + -422.4965706y + y2 = 0

Move the constant term to the right:

Add '-13740.74074' to each side of the equation.
13740.74074 + -422.4965706y + -13740.74074 + y2 = 0 + -13740.74074

Reorder the terms:
13740.74074 + -13740.74074 + -422.4965706y + y2 = 0 + -13740.74074

Combine like terms: 13740.74074 + -13740.74074 = 0.00000
0.00000 + -422.4965706y + y2 = 0 + -13740.74074
-422.4965706y + y2 = 0 + -13740.74074

Combine like terms: 0 + -13740.74074 = -13740.74074
-422.4965706y + y2 = -13740.74074

The y term is -422.4965706y.  Take half its coefficient (-211.2482853).
Square it (44625.83804) and add it to both sides.

Add '44625.83804' to each side of the equation.
-422.4965706y + 44625.83804 + y2 = -13740.74074 + 44625.83804

Reorder the terms:
44625.83804 + -422.4965706y + y2 = -13740.74074 + 44625.83804

Combine like terms: -13740.74074 + 44625.83804 = 30885.0973
44625.83804 + -422.4965706y + y2 = 30885.0973

Factor a perfect square on the left side:
(y + -211.2482853)(y + -211.2482853) = 30885.0973

Calculate the square root of the right side: 175.741563951

Break this problem into two subproblems by setting 
(y + -211.2482853) equal to 175.741563951 and -175.741563951.

Subproblem 1

y + -211.2482853 = 175.741563951 Simplifying y + -211.2482853 = 175.741563951 Reorder the terms: -211.2482853 + y = 175.741563951 Solving -211.2482853 + y = 175.741563951 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '211.2482853' to each side of the equation. -211.2482853 + 211.2482853 + y = 175.741563951 + 211.2482853 Combine like terms: -211.2482853 + 211.2482853 = 0.0000000 0.0000000 + y = 175.741563951 + 211.2482853 y = 175.741563951 + 211.2482853 Combine like terms: 175.741563951 + 211.2482853 = 386.989849251 y = 386.989849251 Simplifying y = 386.989849251

Subproblem 2

y + -211.2482853 = -175.741563951 Simplifying y + -211.2482853 = -175.741563951 Reorder the terms: -211.2482853 + y = -175.741563951 Solving -211.2482853 + y = -175.741563951 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '211.2482853' to each side of the equation. -211.2482853 + 211.2482853 + y = -175.741563951 + 211.2482853 Combine like terms: -211.2482853 + 211.2482853 = 0.0000000 0.0000000 + y = -175.741563951 + 211.2482853 y = -175.741563951 + 211.2482853 Combine like terms: -175.741563951 + 211.2482853 = 35.506721349 y = 35.506721349 Simplifying y = 35.506721349

Solution

The solution to the problem is based on the solutions from the subproblems. y = {386.989849251, 35.506721349}

See similar equations:

| 9u-39=3(u-5) | | (132.5x0..55y)/7.29y=94(1050-5y/350-y) | | 1/2x265x55y/10^3=7.29y | | 5cos^2(x)=4cosx+1 | | -6(8-2n)-8(n-5)=8 | | 4w-4+4w-4+w+w=112 | | 6m-10-2nm-m= | | 1/3x-2=5/6 | | 7r+8(r+2)=16+3r | | 3x+45=x+17 | | 12+3r=-6(r-8) | | -7(1-7a)+6=-1+4a | | 2x+5(3-4x)=-93 | | 2x+5(3-4c)=-93 | | 30(8.75)+11=400 | | -(1-8a)=-8a-33 | | 5k/3-2=8 | | -1-7(k-7)=97 | | 2x-7+4x+3= | | 2m^2+7=117 | | 289=1-8(5n-6) | | P/3-2x(3/2) | | -351=3+6(-3-8x) | | 3r+6(r+4)=87 | | -91=-7(-x+8) | | -91=7x-56 | | 11=2-r | | 4+3n=52 | | 4v-1=-73 | | 15=-3-3r | | 3a^3-a^2=0 | | 57-3G=93-79 |

Equations solver categories